
CS103
Summer 2019

Handout #01
June 24, 2019

Course Information

Course Overview Are there “laws of physics” in computing? Are there fundamental restrictions to what
computers can and cannot do? If so, what do these restrictions look like? What would
make one problem intrinsically harder to solve than another? And what would such re-
strictions mean for our ability to computationally solve meaningful problems?

In CS103, we'll explore the answers to these important questions. We'll begin with an
introduction to mathematical proofs and discrete structures, which will enable us to
model problems that arise in computer science. In the course of doing so, we'll explore
mathematical logic, discrete structures, and the mathematical nature of infinity.

We'll continue by exploring finite automata (mathematical models of computers with
finite memory) and from there will explore context-free grammars and Turing ma-
chines (mathematical models of computers with unbounded memory). As we explore
these models, we'll see their strengths and their weaknesses and will explore questions
like “what does it mean to solve a problem?” and “why does this problem seem to re -
sist a solution?” Finally, we'll conclude with a quick introduction to complexity theory
and explore what we know – and what we don't – about efficient computation.

In the course of the quarter, you'll see some of the most impressive (and intellectually
beautiful) mathematical results of the last 150 years. You'll see what proof-based math-
ematics is all about and will gain confidence using mathematics to model and solve
problems. You'll learn about various discrete structures that arise throughout computer
science. You'll learn how to think about computation itself and how to show that cer-
tain problems are impossible to solve. Finally, you'll get a sense of what lies on the
frontier of computer science, especially with regards to the P ≟ NP problem.

Instructor Amy Liu (liuamyj@cs.stanford.edu)

TAs Hugo Valdivia (hugov65@stanford.edu) (Head TA)

Amanda Spyropoulos
Gili Rusak
Robert Chuchro
Teresa Noyola

Website The course website is cs103.stanford.edu and it's loaded with resources for this course.
There, you'll find all the handouts and lecture slides, along with additional links you
may find useful. I would suggest periodically polling the website to stay on top of any
important developments in the course.

Email The course staff can be reached at cs103-sum1819-staff @stanford.edu . Please don't
hesitate to email us! We're here because we genuinely love this material and want to
share it with you. If you have any questions on the material, or if you're interested in
exploring more advanced content, please get in touch with us. We'd be happy to help
out.

Piazza We have a class Piazza forum you can use to ask questions about the material and to
get help and advice on the problem sets and discussion problems. Our policies regard-
ing Piazza use are covered in our Problem Set Policies handout.

Lectures Mondays, Wednesdays, and Fridays, 3:30 – 5:20PM in Gates B1. Lectures will be
recorded and are available through SCPD. Attendance is highly encouraged.

1 / 5

mailto:hugov65@stanford.edu
mailto:cs103-sum1819-staff@stanford.edu
mailto:cs103-sum1819-staff@stanford.edu
http://cs103.stanford.edu/

Units If you are an undergraduate or are taking this course through SCPD, you need to enroll
in CS103 for five units (these are department and university policies, respectively). If
you are a matriculated graduate student, you may enroll for anywhere between three
and five units, depending on what best fits into your schedule. Regardless of how many
units you are enrolled for, the course content and requirements will be the same. The
unit flexibility is simply to make life easier for matriculated graduate students.

Prerequisites CS103 has CS106B/X as a prerequisite or corequisite. This means that if you want to
take CS103, you must either have completed or be concurrently enrolled in one of
CS106B or CS106X (or have equivalent background experience).

Over the course of the quarter, we will be giving out a number of programming assign-
ments to help you better understand the concepts from the course. Those assignments
will assume a familiarity with C++ and programming concepts (especially recursion) at
a level that’s beyond what’s typically covered in CS106A. The timing on these assign-
ments is designed so that they’ll sync up with what’s covered in CS106B/X.

Although CS103 is a course on the mathematical theory behind computer science, the
only actual math we'll need as a prerequisite is high-school algebra. We'll build up all
the remaining mathematical machinery we need as we go. We've released another
handout detailing the mathematical prerequisites for this course, so if you have any
questions, check it out and see what you find!

Office Hours Amy and the TAs will be holding lots of office hours during the week so that you can
stop by and ask questions about the material. Feel free to stop on by if you need any
help. We'll post a schedule later this week.

Readings There are online course notes for the first few weeks of material. They go into a lot
more depth than what we're going to end up covering in CS103, but hopefully you'll
find them useful for getting a deeper understanding of the material. The course notes
are still a work in progress, so please feel free to contact us with corrections of all sorts
– logic errors, grammatical issues, formatting problems, etc. We also will release a
bunch of handouts over the quarter to provide additional supplementary reading mate-
rial. Additionally, we’ll release a number of graphical guides to various concepts cov-
ered throughout the quarter.

There are two recommended textbooks for this quarter. The first is How to Read and
Do Proofs by Daniel Solow, which is a great resource for learning how to approach
mathematical problem-solving. The second is Introduction to the Theory of Computa-
tion, Third Edition by Michael Sipser. You might find this book useful in the second
half of the quarter. Some of the readings in the syllabus are taken from this book, but
we will not directly test you on any material in Sipser that is not covered as well in lec-
ture or the problem sets.

There are copies of each of these books in reserve in the Engineering Library.

Problem Sets There will be eight total problem sets in CS103, given out about once per week. With
the exception of Problem Set 0, which must be done individually, you are welcome to
work on them individually or in pairs. Our full policies with regards to problem sets
(late policy, regrades, etc.) are in the Problem Set Policies handout.

Exams In addition to problem sets, there will be a final exam on Friday, August 16th from 7PM
– 10PM, location TBD. SCPD students will receive information over email about tak-
ing the exam remotely.

In accordance with university policy, with the exception of OAE accommodations, we
will not offer any alternate final exam times. If you are unable to take the final exam at
the stated time, you will need to take this class in another quarter.

2 / 5

Grading We compute final grades based on two subscores: one for problem sets and one for the
final exam.

Your problem set score is computed as

PSet Score = (Points Earned / Non-Extra-Credit Points Possible)0.5.

In other words, we will take your raw composite problem set score, then take the
square root. This has the effect of boosting your problem set grades. For example, if
you have a 81% raw score on the problem sets, you’d end up with a 90% for your as-
signment score. Similarly, if you had a 64% raw score on problem sets, you’d end up
with an 80% for your assignment score. The problem sets are where you will do most
of the learning in this course, and it’s important that you complete each of them. There-
fore, we do not drop your lowest problem set score.

Your final exam score is computed as an unmodified raw score:

Exam Score = Points Earned / Points Possible.

Note that, in particular, this means that we do not curve exam scores.

We will compute your final raw score at the end of the quarter as

Raw Score = 0.6 · PSet Score + 0.4 · Final Exam Score – Late Penalty.

(The late penalty accounts for late problem set submissions and is described in the
Problem Set Policies handout). We then apply a grading curve to raw scores to assign
letter grades. Historically, we’ve used the median raw score as the B/B+ cutoff. We
never assign letter grades that are lower than the decile of your raw score; for example,
a 90% will never map to anything lower than an A-.

Your final grade will be determined solely according to the grading curve as applied to
the raw score computed above. We do not offer any make-up work.

Honor Code We want to foster a collaborative and supportive atmosphere in CS103. This is why,
for example, we will have so many office hours sections and why we let you work in
pairs on the assignments. We expect you to abide by the letter and the spirit of the
Stanford Honor Code in CS103. You are required to read and abide by the policies de-
tailed in our handout on the Honor Code as it applies in CS103, which among other
things discusses our expectations for what is and is not permissible collaboration on the
problem sets.

We hope that you will respect the Honor Code, comport yourself with integrity, and
work to create a learning environment where everyone feels supported.

Incomplete Policy If a serious medical or family emergency arises and you cannot complete the work in
this course, you may contact Amy – not the TAs – to request an incomplete. We re-
serve incompletes only for emergencies, so we do not grant incomplete grades for poor
performance on the assignments or exams, nor do we offer incompletes for busy work
schedules.

In order to be eligible for an incomplete, you must have completed all of the assign-
ments (except possibly the most-recently-due assignment) and must have a solid aca-
demic performance in the course, as determined by the instructor. The instructor has
the final say in whether to grant or deny incompletes. While the above criteria indicate
certain cases in which incompletes will not be granted, there are no situations in which
the instructor is obligated to offer an incomplete.

3 / 5

Course Outline

Dates and topics below are tentative and subject to change.

Part One: Discrete Mathematics

Date Topics Readings Assignments

Monday,
June 24

Can computers solve all problems?
 Set Theory
 The Limits of Computing

Notes, Ch. 1
Online Guides

PS0 Out

Wednesday,
June 26

How do we prove results with certainty?
 Direct Proofs Notes, Ch. 2

Friday,
June 28

How do we prove something without directly proving it?
 Proof by Contradiction
 Proof by Contrapositive

Notes, Ch. 2
PS0 Due
PS1 Out

Monday,
July 1

How can we formalize our reasoning?
 Propositional Logic

PS1 Checkpoint Due

Wednesday,
July 3

How can we reason about collections of objects?
 First-Order Logic, Part I

Friday,
July 5

How do we rigorously define key terms?
 First-Order Logic, Part II

Handouts
Online Guides

PS1 Due
PS2 Out

Monday,
July 8

How do we model relationships between objects?
 Binary Relations
 Equivalence Relations

Notes, Ch. 5

Wednesday,
July 10

What does it mean to compare two objects?
 Fundamental Theorem of Equivalence Relations
 Strict Order Relations

Notes, Ch. 5

Friday,
July 12

How do we model transformations and associations?
 Functions
 Injections, Surjections, and Bijections

Handouts
Notes, Ch. 6

PS2 Due
PS3 Out

Monday,
July 15

How do we model network structures?
 Graphs
 The Pigeonhole Principle

Notes, Ch. 4 PS3 Checkpoint Due

Wednesday,
July 17

How can we reason about sequential processes?
 Mathematical Induction Notes, Ch. 3

Friday,
July 19

How does recursion relation to mathematical proof?
 Variations on Induction
 Complete Induction

Notes, Ch. 3
Handouts

PS3 Due
PS4 Out

Part Two: Computability Theory

Monday,
July 22

How do we mathematically model computers?
 DFAs
 NFAs

Sipser 1.1

4 / 5

Wednesday,
July 24

How can we transform machines?
 Equivalence of DFAs and NFAs
 Closure Properties of Regular Languages

Sipser 1.2

Friday,
July 26

Can we generate new programs from old programs?
 Regular Expressions
 Equivalence of Regular Expressions and NFAs

Sipser 1.3
PS4 Due
PS5 Out

Monday,
July 29

Can computers with finite memory solve all problems?
 Nonregular Languages
 The Myhill-Nerode Theorem

Wednesday,
July 31

How do natural and formal languages overlap?
 Context-Free Grammars
 Context-Free Languages

Sipser 2.1

Friday,
August 2

How do we model realistic computers?
 Turing Machines
 Designing Turing Machines

Sipser 3.1
PS5 Due
PS6 Out

Monday,
August 5

What does it mean to solve a problem with a computer?
 R and RE Languages
 The Universal Turing Machine, Self-Reference

Sipser 4.1, 4.2,
6.1

Wednesday,
August 7

What is the full scope of computing power?
 Verifiers
 Unrecognizability

Online Guides

Friday,
August 9

How do we measure the difficulty of problems?
 The P versus NP Question
 Reducibility, Part I

Sipser 7.2
Sipser 7.3

PS6 Due
PS7 Out

Part Three: Complexity Theory

Monday,
August 12

Review Session for Final Exam

Wednesday,
August 14

What makes hard problems hard?
 Reducibility, Part II
 NP-Completeness

Sipser 7.4
PS7 Due

No late submissions

Friday,
August 16

Final Exam
7PM – 10PM, Location TBD

Covers Topics from PS0 – PS7

5 / 5

